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1. Introduction

Over the years it has become more evident that string theory, as a candidate of quantum

gravity, and Yang-Mills theory are dual to each other [1]. One important line of progress

has been made around the Matrix theory conjecture [2], which suggests that M-theory,

the quantum completion of 11 dimensional supergravity theory in Minkowski background,

is reduced to supersymmetric Yang-Mills quantum mechanics with SU(N) gauge group in

the large N limit, when viewed in light-cone frame. There are two seemingly different ways

to justify the Matrix theory conjecture. One is as a discretized supermembrane action [3],

and the other is as the D0-brane dynamics which is believed to give a partonic description

of M-theory when quantized along a light-like direction [2].

It is certainly desirable to extend the Matrix theory conjecture to more general back-

grounds with less supersymmetry and smaller isometry groups, see e.g. [4, 5]. A natural

way to explore is to turn on the gauge flux. Indeed, when one considers the maximally su-

persymmetric plane-wave solution [6], it is again possible to find the supermembrane action

in light-cone gauge and the resulting Yang-Mills quantum mechanics is conjectured to give

the corresponding Matrix theory description [7, 8]. This particular matrix model is usually

called the BMN (Berenstein, Maldacena, and Nastase) matrix model, and thanks to the

mass parameter set by the non-vanishing flux, one can perturbatively compute the energy

spectrum [8, 9], unlike the original Matrix model in flat background. The existence of

protected supermultiplets [9 – 11] turns out to be essential to verify the duality at the non-

perturbative level, e.g. the dual modes of transverse M5-branes in the matrix model [12].
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It is also noteworthy that the mass parameter of the Matrix theory can be traced back to

the radius of S3, when one puts the superconformal N = 4,D = 4 Yang-Mills theory on

R × S3 for dimensional reduction [13].

It is straightforward to consider similar plane-wave solutions of D = 11 supergravity

with constant flux and less supersymmetries [14 – 16]. One notable feature of such solutions

is the so-called supernumerary supersymmetries, which mean that they preserve between

16 to 32 supersymmetries. It is possible for some of such backgrounds to identify the

string/M-theory origin, for instance as intersecting M-brane configurations [17].

In this paper we attempt a further generalization and consider pp-waves with non-

constant gauge fluxes. More specifically, we divide the 9 dimensional transverse space into

a real 3 dimensional space R
3 and a complex 3 dimensional subspace C

3, and allow the

configurations to depend only on the coordinates of C
3 through a holomorphic function,

which we call a superpotential. As a result the metric tensors will have SO(3) × U(1) ×
R isometry, where U(1) is the remaining invariance of the complex 3 dimensional space

guaranteed by holomorphicity, and R denotes the null Killing vector. However, U(1) is

generically broken for the entire solution when we also take the flux into account.

Inhomogeneous pp-waves with non-constant flux have been considered by several au-

thors in similar settings. For 10 dimensional IIB supergravity, pp-waves on special holon-

omy manifolds are studied and it is shown that the Ramond-Ramond 5-form induces a

superpotential on the light cone worldsheet Lagrangian [18], while the 3-forms are respon-

sible for Killing vector potentials [19]. More recently, inspired by [20], supersymmetric

Matrix models with so-called β-deformation are studied [21], and it is illustrated that the

deformation superpotential of the discretized supermembrane action is given by inhomo-

geneous background fluxes which have a linear dependence on transverse coordinates. It

is this discovery which motivated our research on pp-waves with a generic superpotential

reported in this paper.

We establish the light-cone supermembrane action in our new inhomogeneous pp-wave

configurations and write down the relevant matrix model action, which turns into the

supermembrane action in the continuum large N limit. Because this matrix model has a

generic superpotential, whose arguments are promoted to matrices, we encounter the usual

matrix ordering ambiguity problem. We give an exposition on how this ambiguity is fixed

by supersymmetry and the requirement to express the superpotential as a gauge singlet,

i.e. a single or multi-trace operator.

The symmetry of our solutions and the existence of a holomorphic function suggests

that these models should be naturally related to N = 1,D = 4 super Yang-Mills theory

with 3 chiral multiplets in the adjoint representation. It is verified explicitly through

decomposition of the fermionic as well as the bosonic fields, and we identify the total

superpotential of the Yang-Mills quantum mechanics.

This paper is organised as follows. In section 2, we present the pp-wave solutions of

11 dimensional supergravity we will be dealing with in this paper. It is also shown that

these backgrounds in general allow 8 nontrivial solutions to the Killing spinor equation. In

section 3, we consider the light-cone action of supermembranes in the pp-wave background,

and show how it is reduced to a gauge theory of area-preserving diffeomorphisms. In section

– 2 –
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4 we provide the Yang-Mills quantum mechanics action which is obtained via the usual

discretization method of replacing the Poisson brackets with commutators [22, 3]. In section

5, we establish that our supermembrane/matrix actions can be also expressed as N = 1

Yang-Mills theory with 3 interacting chiral multiplets, and identify the total superpotential.

In section 6 we conclude with brief discussions.

2. A class of supersymmetric pp-wave solutions in D = 11 supergravity

Let us start by presenting the supergravity solutions we will study in this paper. Readers

are referred to, for instance [15], for conventions of D = 11 supergravity.

Most generally, by a pp-wave in 11 dimensional supergravity we mean the following

type of configurations

ds2 = 2dx−dx+ +H(x+, xM )(dx+)2 +

9
∑

M=1

(dxM )2, (2.1)

F (4) = dx+ ∧ φ(x+, xM ). (2.2)

The above ansatz is greatly simplifying and one can easily verify that the only nontrivial

component of the Einstein equation gives

∇2H = −1

6
φMNPφ

MNP , (2.3)

where the Laplacian is taken in the 9 dimensional transverse space. One of course has to

consider the flux equation of motion and the Bianchi identity for F (4), so we demand φ is

harmonic:

dφ = 0, d(∗9φ) = 0. (2.4)

In this paper we are interested in a rather special subclass of the general pp-waves

given above. We first divide the 9 dimensional space into 3 dimensional and 6 dimensional

subspaces, and assume H,φ can depend only on the 6 dimensional coordinates. We will

find it convenient to employ complex coordinates for the 6 dimensional space. Let us call

them za, (a = 1, 2, 3), and z̄ā are the complex conjugates. Now the 9 dimensional part of

the metric is written as

ds29 =
3
∑

i=1

(dxi)2 + 2
3
∑

a=1

dzadz̄ā, (2.5)

and accordingly ∇2 = 2
∑3

a=1 ∂a∂̄ā.

The upshot is that we can obtain a large class of solutions which are reminiscent of

N = 1,D = 4 supersymmetric field theory. Our construction is as follows. Firstly, we

choose φ as a primitive (2, 1) form plus its complex conjugate, in the space spanned by za.

Componentwise, one writes

φābc = ∂ā∂d̄Wǫd̄bc, (2.6)

and in the same way for the complex conjugate, φab̄c̄. Note that W is a holomorphic

function of za, and we take the convention ǫ123 = ǫ1̄2̄3̄ = 1 for the totally antisymmetric

– 3 –
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tensor. Primitivity means that a symplectic trace of φ is zero, i.e. φāab = 0, implying φ is

imaginary self-dual in 6 dimensions.

It can be easily confirmed that φ, as given above, is in fact closed and co-closed. One

easily integrates eq. (2.6) and the 2-form potential ψ, with dψ = φ, is given in terms of a

(2, 0) form,

ψab = ǫc̄ ab∂c̄W. (2.7)

Now we only need to check the equation eq. (2.3) with an appropriate choice of H. It

is easily seen that eq. (2.3) is indeed satisfied with

H = −|∂W |2. (2.8)

Having established that the configuration indeed satisfies the equations of motion, let

us now consider the Killing spinor equations. For 11 dimensional pp-waves with constant

flux, the Killing spinor equations have been studied in detail in ref. [14 – 16]. We closely

follow the convention and the analysis of [15], which is repeated here to some extent for

self-sufficiency.

For the pp-wave metric, it is convenient to choose the following frame

e+ = dx+, (2.9)

e− = dx− +
H

2
dx+, (2.10)

eM = dxM , (2.11)

then the only nonvanishing components of the spin connection are

ω−M =
1

2
∂MHdx

+. (2.12)

From the D = 11 supersymmetry transformation rule, the invariance of the gravitino

requires ∇µǫ = Ωµǫ, with

Ωµ =
1

288
(γ νρστ

µ − 8δν
µγ

ρστ )F (4)
νρστ . (2.13)

From the pp-wave ansatz Ωµ is reduced to

Ω+ = − 1

12
Θ(γ−γ+ + 1), (2.14)

Ω− = 0, (2.15)

ΩM =
1

24
(3ΘγM + γMΘ)γ−, (2.16)

where Θ = 1
6φMNP γ

MNP .

At this stage, it is convenient to introduce two SO(9) spinors, ǫ±, to describe the 11

dimensional Majorana spinor ǫ. We use the basis where γµ are 32×32 matrices and given as

γ+ =

(

0 1

0 0

)

, γ− =

(

0 0

1 0

)

, γM =

(

ΓM 0

0 −ΓM

)

, (2.17)
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where M = 1, . . . , 9 and ΓM are SO(9) gamma matrices. We can in fact take ΓM to be all

real and symmetric. Now, if we accordingly decompose ǫ as

ǫ =

(

ǫ+
ǫ−

)

, (2.18)

we have the following equations for ǫ±.

∂+ǫ+ = − 1

12
Θǫ+ , ∂+ǫ− = −

√
2

4
∂/Hǫ+ +

1

12
Θǫ− ,

∂−ǫ+ = 0 , ∂−ǫ− = 0 , (2.19)

∂M ǫ+ = 0 , ∂M ǫ− =

√
2

24
(3ΘΓM + ΓMΘ)ǫ+ .

With a slight abuse of the notation, we now re-defined Θ = 1
6ΦMNP ΓMNP . We see that,

in general we can first solve the equations for ǫ+, then plug it into the equations for ǫ−. A

simple type of solutions, which are sometimes called kinematic supersymmetries, are given

as follows: We set ǫ+ = 0, and demand ǫ− is also constant and annihilated by Θ. Since

our 3-form field φ is (2, 1) and primitive, Θ annihilates any SU(3) singlet spinor, which

satisfies the following projection rules

Γ12ǫ = Γ34ǫ = Γ56ǫ. (2.20)

Let us denote hereafter, a constant and Majorana spinor of SO(9) satisfying eq. (2.20) as

ǫ(0). It is now obvious that

ǫ+ = 0, ǫ− = ǫ(0), (2.21)

provides 4 linearly independent solutions of the Killing equation.

Now let us verify that our background configuration in fact allows 4 more supersymme-

tries with ǫ+ 6= 0. This is sometimes called dynamical supersymmetries, and are responsible

for the supersymmetry of the supermembrane action or the associated super Yang-Mills

action which will be derived in the remainder of this paper. We already know that the

equation for ǫ+ can be solved by any constant spinor if it is an SU(3) singlet. So we first

set ǫ+ = ǫ(0). After a little computation, one can verify that if we set

ǫ− = −
√

2

8
∂aWǫabcΓbcǫ

(0) + c.c. (2.22)

then the equations for ǫ− are identically satisfied. Note that our Killing spinor solutions,

kinematical and dynamical altogether, have no dependence on x+.

3. The light-cone supermembrane description

We now wish to derive the light-cone gauge fixed action for a supermembrane propagating

in the above pp-wave background. The structure of the (super)-membrane action in curved

backgrounds has been analyzed in a number of works, including [23, 24]. We here briefly

repeat this construction in an economic first order formalism.

– 5 –
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3.1 First order formalism

In order to fix the light-cone gauge it is advantageous to bring the Polyakov formulation

of the membrane into a first order formulation. The bosonic membrane propagating in a

general background geometry Gµν(X) and 3-form potential Cµνρ(X) with the membrane

embedding coordinates Xµ = Xµ(τ, σ1, σ2) is given by

S = − T

2

∫

d3ξ
(

γαβ ∂αX
µ ∂βX

ν Gµν(X) −
√
−h
)

+
κ

3!

∫

d3ξ ǫαβγ ∂αX
µ ∂βX

ν ∂γX
ρ Cµνρ(X), (3.1)

where hαβ is the world-volume metric and we have defined γαβ =
√
−hhαβ with det γ =

−
√
−h. T is the membrane tension and κ = ±1. This ‘Polyakov’ form of the action is

equivalent to the first order formulation

S′ =

∫

d3ξ

[

Pµ Ẋ
µ +

1

2Tγ00

{

Pµ Pν G
µν(X) + T 2 γ0r ∂rX

µ γ0s ∂sX
ν Gµν

− κPµ G
µν Cνρκ ǫ

rs ∂rX
ρ ∂sX

κ

}

− T

2

(

γrs ∂rX
µ ∂sX

ν Gµν(X)

+ det γ
)

+
γ0r

γ00
Pµ ∂rX

µ

]

. (3.2)

Here r, s = 1, 2 denote the space-like directions on the membrane world-volume. One

checks that plugging back into S′ the solution of the algebraic field equations for Pµ yields

S. The equations of motion for the non-dynamical γαβ give rise to the constraints of the

theory. We now proceed by choosing the gauge condition γ0r = 0 which turns its associated

constraint equation into

Pµ ∂rX
µ = 0 . (3.3)

This is the analogue of the level matching condition in string theory. Furthermore the

equation of motion for γrs can be solved to give

γrs =
1

γ00

(

−∂2X · ∂2X ∂1X · ∂2X

∂1X · ∂2X −∂1X · ∂1X

)

. (3.4)

Inserting this result into (3.2) yields the first order form of the action

S′ =

∫

d3ξ

[

Pµ Ẋ
µ +

1

2Tγ00

{

PµG
µν(X)

(

Pν − κCνρκ(X) {Xρ,Xκ}
)

+
T 2

2
{Xµ,Xν} {Xρ,Xκ}Gµρ(X)Gνκ(X)

}]

, (3.5)

with the usual definition of the Poisson bracket {Xµ,Xν} := ǫrs ∂rX
µ ∂sX

ν . This formu-

lation of the theory is a suitable starting point for a light-cone gauge.

– 6 –
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3.2 Gauge fixed action

We now impose the light-cone gauge conditions

X+ = τ, P− = 1 . (3.6)

Let us then specialize to the background of our inhomogenous pp-wave ansatz (2.1) (r, s, t =

1, . . . , 6, M,N = 1, . . . , 9)

G++ = H(Xr), G+− = 1, G−− = 0, GMN = δMN = GMN , C+rs 6= 0,

G−− = −H(Xr), G+− = 1, G++ = 0. (3.7)

The light-cone Hamiltonian −P+ now follows from solving the equations of motions for

γ00 emerging from (3.5) for this specific background. Due to the gauge choices (3.6) many

terms cancel and one finds

HLC = −P+ =
1

2

(

P 2
M −H(Xr) − κC+rs(X

t) {Xr,Xs} +
T 2

2
({XM ,XN})2

)

. (3.8)

Alternatively one may consider the gauge-fixed second order form of the action which

is obtained from (3.5) upon reinserting the solution of the equations of motion for the

transverse momenta and the above P+. One then finds

LGF =
1

2
Ẋ2

M +
1

2
H(Xr) +

κ

2
C+rs(X

t) {Xr,Xs} − T 2

4
({XM ,XN})2 . (3.9)

This constitutes the light-cone bosonic membrane action in the background (3.7).

We now turn to the fermionic sector which has been neglected so far. The linear

couplings to the background fields are known for the complete light-cone supermembrane

from the supermembrane vertex operator construction of [25]. From this we infer that

next to the usual flat-space fermion structure there is only one additonal Yukawa-type

interaction term coupling to the three-form. We then have (setting T = κ = 1) the gauge

fixed supermembrane lagrangian

LAPD =
1

2
(DτXM )2 +

1

2
H(Xr) +

1

2
C+rs(X

t) {Xr,Xs} − 1

4
({XM ,XN})2

+ i θ†Dτθ + i θ†ΓM {XM , θ } − i

8
(∂r C+st) θ

†Γrstθ , (3.10)

where θ are SO(9) Majorana spinors. In (3.10) we have also promoted the τ derivatives to

covariant ones Dτ O = ∂τO − {ω,O}, where ω is the gauge field of area preserving diffeo-

morphisms (APD) whose equations of motion give rise to the remaining ‘level-matching’

contraint equations (3.3). This formulation of the supermembrane allows for a SU(N)

matrix regularisation in the usual fashion known from a flat space background [3] modulo

ordering ambiguities.

Next we go to a complex basis in the bosonic SO(6) sector: X1, . . . ,X6 → Za, Z̄ ā with

a = 1, 2, 3 and ā = 1̄, 2̄, 3̄ explicitly we take

Z1 =
1√
2

(X1 + iX2), Z̄ 1̄ =
1√
2

(X1 − iX2) = (Z1)†, etc.

X1 =
1√
2

(Z1 + Z̄ 1̄), X2 = − i√
2

(Z1 − Z̄ 1̄), etc. (3.11)

– 7 –
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and the metric reads, now letting M = (a, ā, i),

ηMN =







0 δab̄ 0

δb̄a 0 0

0 0 δij






. (3.12)

Note that depending on the context we employ a real or complex notation for the SO(6)

indices, i.e. M = (a, ā, i) or M = (r, i), however maintaining the same symbol XM for the

embedding coordinates.1 The distinction should be clear, however, from the context.

The background field data in this language from the supergravity analysis of section 2 is

H(Z, Z̄) = −∂aW (Z) ∂āW (Z̄) , C+ab = ǫdab ∂d̄W (Z̄) , C+āb̄ = ǫd̄āb̄ ∂dW (Z) .

(3.13)

In (3.10) the SO(9) gamma matrices ΓM are 16 × 16 nine-dimensional (with the indices

M = a, ā, i) and satisfy the Clifford algebra,

{ΓM ,ΓN} = 2ηMN . (3.14)

With the charge conjugate matrix C,

(ΓM )T = (ΓM )∗ = CΓMC−1 , C = CT , (3.15)

the 16-component spinor θ satisfies the Majorana condition

θ† = θTC . (3.16)

We then have the following form of the gauge fixed supermembrane lagrangian

LAPD =
1

2
DτX

M DτXM − 1

4
{XM ,XN}{XM ,XN} + i θ†Dτθ + i θ†ΓM {XM , θ }

− 1

2
∂aW ∂āW +

1

2
ǫdab ∂d̄W {Za, Zb} +

1

2
ǫd̄āb̄ ∂dW {Z̄ ā, Z̄ b̄}

− i

8
εd̄āb̄ ∂c∂dW θ†Γc̄abθ −

i

8
εdab ∂c̄∂d̄W θ†Γcāb̄θ . (3.17)

In the sequel we shall show that this action also arises from dimensional reduction of N = 1

super Yang-Mills coupled to three chiral matter multiplets with a superpotential dictated

by W (Z). Before doing so we will present the matrix theory version of this supermembrane

theory and state the supersymmetry transformations.

4. The M-theory matrix model description

The standard matrix discretization procedure of the supermembrane action (3.17) replaces

the embedding coordinates by N ×N matrices and the Poisson-brackets by commutators,

i.e.

XM (τ, σ1 σ2) −→ (XM )ij(τ) , { · , · } −→ i [ · , · ] . (4.1)

1The embedding coordinates satisfies then the following reality condition

(XM )† = ηMNX
N = XM where X

M = (Za
, Z̄

ā
,X

i) .

– 8 –
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However, writing down the supersymmetric matrix model associated to (3.17) is nontrivial

due to ordering ambiguities of the matrices. Here we present our result first, and then

discuss the subtleties involved. We claim that the following M-theory matrix model,

LMM =Tr

(

1

2
DtX

MDtXM +
1

4
[XM ,XN ][XM ,XN ] + iθ†Dtθ − θ†ΓM [XM , θ]

)

+
1

2
Tr
(

iǫāb̄
c[Z̄ ā, Z̄ b̄]∂cW + iǫab

c̄[Za, Zb]∂̄c̄ W − ∂aW∂aW
)

(4.2)

− i

8
Tr
(

θ†ΓaΓ1̄2̄3̄Γb∂aTr (θ∂bW ) + θ†ΓāΓ123Γb̄∂̄āTr
(

θ∂̄b̄W
)

)

,

enjoys four dynamical as well as four kinematical supersymmetries. Note that the La-

grangian above is determined by an arbitrary holomorphic superpotential W which is a

scalar function of 3 hermitian matrices Za. It goes over to the membrane lagrangian (3.17)

in the N → ∞ limit upon replacing commutators by Poisson brackets. While this is rather

obvious for the first two lines of (4.3), it is not much so for the Yukawa-type terms of

the last line of (3.17). In order to make the comparison we note that, upon ignoring the

ordering of the matrix valued θ and Z fields, we have

Tr
(

θ†ΓaΓ1̄2̄3̄Γb∂aTr (θ∂bW )
)

→ ∂e∂dW θ†ΓeΓ1̄2̄3̄Γdθ = ∂e∂dW θ†Γe(
1

6
ǫāb̄c̄Γ

āb̄c̄)Γdθ

= ǫd̄āb̄∂d∂cW θ†Γc̄abθ (4.3)

matching the corresponding terms in (3.17).

W is an arbitrary U(N) singlet and holomorphic in Za, and W is the complex conju-

gate W †. More explicitly, W is a function of traces, like Tr(Za1Za2 · · ·Zan), so we allow

multi-traces, for instance. ∂aW is matrix-valued as we suppress the matrix indices in our

presentation. The time derivative is the gauge covariant one such as DtX
i = d

dt
− i[A0,X

i],

A0 is the matrix field corresponding to the APD gauge field ω in (3.17).

The 4 + 4 supersymmetries are realized as

δA0 = iθ†ε , δXM = iθ†ΓMε ,

δθ =
1

2

(

ΓMDtXM − i

2
ΓMN [XM ,XN ] +

1

4
ΓaΓ1̄2̄3̄∂aW +

1

4
ΓāΓ123∂̄āW

)

ε+ η . (4.4)

The supersymmetry parameters ε and η are Majorana spinors ε† = εTC, η† = ηTC and

satisfy the following projection property

ε = Pε , η = P η , P = 1
8(Γ123Γ3̄2̄1̄ + Γ3̄2̄1̄Γ123) . (4.5)

Essentially the projector P leaves only the SU(3) singlet sector,2 which has four nontrivial

components, since P = P 2 = P † and trP = 4. We thus have four dynamical supersym-

metries parametrzed by ε and four kinematical supersymmetries parametrizes η intact,

matching the supergravity picture.

2P decomposes further into two orthogonal projections, P = P+ + P− where P+ = 1

8
Γ123Γ3̄2̄1̄, P− =

1

8
Γ3̄2̄1̄Γ123 satisfying P± = P 2

± = P
†
±, P+P− = P−P+ = 0 and trP± = 2. We furthermore note the identities

Γ1̄2̄3̄ Γa P = 0 and Γ123 Γā P = 0.
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In order to verify the supersymmetry invariance it is noteworthy that the following

terms, cubic in θ, vanish identically

Tr
[

θ†Γaε∂aTr
(

θ†ΓbΓ1̄2̄3̄Γc∂bTr(θ∂cW )
)]

= 0 , (4.6)

since it essentially corresponds to anti-symmetrizing three of two-component spinor indices.

Other useful identities are3

[Za, ∂aW ] = 0 , [Z̄ ā, ∂̄āW ] = 0 . (4.7)

Having established the supermembrane and matrix theory description of our M-theory

pp-wave background, we now proceed to investigate how these actions can be reexpressed

as dimensional reduction of four-dimensional N = 1 supersymmetric Yang-Mills theory

coupled to three chiral matter supermultiplets.

5. The N = 1 supersymmetry description

Our discussions so far make it evident that the supermembrane or matrix theory can be

alternatively understood as the dimensional reduction of N = 1,D = 4 super Yang-Mills

theory to one dimension. In this section we start from the supermembrane action and

rephrase it in a way where N = 1 symmetry is more manifest. We first show that in the

bosonic sector the interactions are correctly given by the F-term and D-term potentials

from the true superpotential which includes the familiar cubic superpotential of N = 4

theory, in addition to the superpotential of the supergravity background. We then proceed

to decompose the SO(9) Majorana spinor into 4 copies of 2-component Weyl spinors, and

in particular check that the Yukawa couplings are determined by the superpotential, just

as one would expect from N = 1 supersymmetry.

5.1 The superpotential

The bosonic part of the gauge-fixed supermembrane or gauge theory of area-preserving

diffeomorphism Lagrangian reads (3.10)

LGF,bos =
1

2
(DτXM )2 − V (X),

with V (X) = −1

2
H(Xr) − 1

2
C+rs {Xr,Xs} +

1

4
({XM ,XN})2 . (5.1)

3This can be checked by noting

[Za
, ∂aTr(Zb1Z

b2 · · ·Zbn )] =

n
X

l=1

“

Z
bl · · ·ZbnZ

b1 · · ·Zbl−1 − Z
bl+1 · · ·ZbnZ

b1 · · ·Zbl

”

= 0 .

An analogue identity holds for the holomorphic superpotential in the supermembrane action in terms of

Poisson bracket, {Za, ∂aW (Z)} = 0.
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We note the decomposition of the last piece of the scalar potential in the pure SO(6) sector

(r, s = 1, . . . , 6)

1

4

∫

d2σ ({Xr,Xs})2 =

∫

d2σ

(

{Za, Zb} {Z̄ ā, Z̄ b̄} − 1

2
({Za, Z̄ ā})2

)

=

∫

d2σ

(

1

2
ǫdab {Za, Zb} ǫd̄āb̄ {Z̄ ā, Z̄ b̄} − 1

2
({Za, Z̄ ā})2

)

, (5.2)

where use of Jacobi’s identity for the Poisson brackets has been made. With the help of

this we can now rewrite the scalar potential V (Xi, Za, Z ā) into F-term and D-term pieces

along with the SO(3) and SO(6) mixed contributions (m = 1, 2, 3):

V (X,Z, Z̄) =
1

2

(

∂dW − ǫdab {Za, Zb}
)(

∂d̄W − ǫd̄āb̄ {Z̄ ā, Z̄ b̄}
)

− 1

2
( {Za, Z̄ ā} )2

+
1

4
({Xi,Xj})2 + {Xi, Za} {Xi, Z̄ ā} . (5.3)

Hence the F-term piece of the potential is governed by the holomorphic superpotential

W(Z1, Z2, Z3) =

∫

d2σ

(

W (Z1, Z2, Z3) − 1

3
ǫabc Z

a {Zb, Zc}
)

. (5.4)

5.2 The fermionic terms

We now turn to a rewriting of the SO(9) spinors in (3.17) or respectively (4.3) in an

SO(3) × SO(6) split following the conventions of [13], appendix A. For this we decompose

the Dirac matrices according to (i = 1, 2, 3, r = 1, . . . , 6)

Γi =

(

−σi ⊗ 14 0

0 σi ⊗ 14

)

, Γr =

(

0 12 ⊗ ρr

12 ⊗ ρ†r 0

)

, (5.5)

where σi are the three Pauli matrices and the 4 × 4 matrices ρr and ρ†r satisfy

ρr ρ
†
s + ρs ρ

†
r = ρ†r ρs + ρ†s ρr = 2 δrs 14 . (5.6)

The charge conjugation matrix in this representation is given by

C9 =

(

0 ǫαβ ⊗ 14

−ǫ
α̇β̇

⊗ 14 0

)

, (5.7)

allowing one to write the spinor as4

θ =

(

θαA

θ̄α̇
A

)

, θ† = θT C9 = (θ̄α̇A θα
A) , α = 1, 2 , A = 1, . . . , 4 , (5.8)

where θαA and θ̄α̇ A are now four 2-component Weyl spinors respectively. In terms of these

the Yukawa couplings to the SO(6) scalars Xr may be reexpressed as

{θ†Γr, θ}Xr = {θA, θB} (ρ†r)AB X
r + {θ̄A, θ̄B} (ρr)AB X

r (5.9)

= {θA, θB}
[

(Ωa)ABZ
a+(Ωā)ABZ̄

ā
]

+{θ̄A, θ̄B}
[

(Ωa)ABZ
a+(Ωā)ABZ̄

ā
]

,

4We use the standard index free Weyl spinor notation with the convention: λψ := −εαβλαψβ = ψλ and

λ̄ψ̄ := εα̇β̇λ̄α̇ψ̄β̇ = ψ̄λ̄. Moreover i(σ2)αβ = ǫαβ and (λα)∗ = λ̄α̇.
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where we have introduced the 4 × 4 matrices Ωa and Ωā (a = 1, 2, 3; ā = 1̄, 2̄, 3̄) via

Ω1 =
1√
2

(ρ1 − iρ2) , Ω1̄ =
1√
2

(ρ1 + iρ2) , etc.

Ω1 =
1√
2

(ρ†1 − iρ†2) , Ω1̄ =
1√
2

(ρ†1 + iρ†2) , etc. (5.10)

which satisfy

ΩāΩb + ΩbΩā = ΩāΩb + ΩbΩā = 2 ηāb 14 ,

ΩaΩb + ΩbΩa = ΩaΩb + ΩbΩa = 0 ,

ΩāΩb̄ + Ωb̄Ωā = ΩāΩb̄ + Ωb̄Ωā = 0 . (5.11)

It is useful to employ a definite representation for the antisymmetric ρr matrices:

ρ1 = −1⊗ iσ2 , ρ2 = −σ3 ⊗ σ2 ,

ρ3 = −iσ2 ⊗ σ3 , ρ4 = −σ2 ⊗ 1 ,

ρ5 = −iσ2 ⊗ σ1 , ρ6 = −σ1 ⊗ σ2 . (5.12)

In terms of these one finds

Ωa Z
a =

√
2











0 0 0 0

0 0 −Z3 Z2

0 Z3 0 −Z1

0 −Z2 Z1 0











, Ωā Z̄
ā =

√
2











0 −Z̄ 1̄ −Z̄ 2̄ −Z̄ 3̄

Z̄ 1̄ 0 0 0

Z̄ 2̄ 0 0 0

Z̄ 3̄ 0 0 0











. (5.13)

We are led to identify θ0 with the N = 1 gluino λ and the remaining components with the

SU(3) matter fermions ψa and ψ̄ā in the 3 and 3̄ representations via

θA = (λ, ψ1, ψ2, ψ3) θ̄A = (λ̄, ψ̄1̄, ψ̄2̄, ψ̄3̄) . (5.14)

This leads us to the compact expressions

{θA, θB}(Ωa)AB Z
a = −

√
2 εabc Z

a {ψb, ψc} ,
{θA, θB}(Ωā)AB Z̄

ā = −2
√

2 Z̄ ā {λ, ψa}
{θ̄A, θ̄B}(Ωa)AB Z

a = 2
√

2Za {λ̄, ψ̄ā} ,
{θ̄A, θ̄B}(Ωā)AB Z̄

ā =
√

2 εāb̄c̄ Z̄
ā {ψ̄b̄, ψ̄c̄} , (5.15)

again suppressing the 2-component Weyl spinor indices. Upon inserting this into (5.9)

reproduces the Yukawa couplings and part of the superpotential couplings of N = 1 super

Yang-Mills coupled to 3 chiral multiplets in the SU(3).

The remaining fermion term coupling to the three-form C+rs of (3.10) (compare (3.17))

reads
i

8
∂rC+st θ

†Γrstθ =
i

8
εd̄āb̄ ∂c∂dW θ†Γc̄abθ +

i

8
εdab ∂c̄∂d̄W θ†Γcāb̄θ . (5.16)

In the SO(3) × SO(6) split the three-index Dirac matrices Γc̄ab take the form

Γc̄ab =

(

0 12 ⊗ Ωc̄ab

12 ⊗ Ωc̄ab 0

)

, θ†Γc̄abθ = θAθB (Ωc̄ab)AB + θ̄Aθ̄B (Ωc̄ab)AB , (5.17)
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with Ωc̄ab := Ω[c̄ Ωa Ωb] and Ωc̄ab := Ω[c̄ Ωa Ωb] antisymmetrized with unit weight. One then

shows using the above representation that

θAθB (Ωc̄ab)AB = 2
√

2ψcψd εabd

θ̄Aθ̄B (Ωc̄ab)AB = −2
√

2 ( ηc̄a λ̄ψ̄
b̄ − ηc̄b λ̄ψ̄

ā ) (5.18)

Hence we have in (5.16)

i

8
εd̄āb̄ ∂c∂dW θAθB (Ωc̄ab)AB =

i√
2
∂c∂dW ψcψd , (5.19)

the expected fermionic coupling in the matter sector to the holomorphic superpotential

W (Za), whereas the nonholomorphic second term in (5.16) drops out as it should:

i

8
εd̄āb̄ ∂c∂dW θ̄Aθ̄B (Ωc̄ab)AB =

i√
2
εd̄c̄b̄ ∂c∂dW λ̄ψ̄b̄ = 0 . (5.20)

and the analogous terms for the hermitian conjugate contributions.

Upon collecting everything we indeed find an N = 1 super Yang-Mills model of area

preserving diffeomorphisms coupled to three chiral multiplets transforming in the funda-

mental representation of SU(3) dimensionally reduced to one-time dimension:

LGF, susy =
1

2
(DτX

i)2 − 1

4
({Xi,Xj})2 +DτZ

aDτ Z̄
ā − {Xi, Za} {Xi, Z̄ ā}

−1

2
∂aW(Z)∂̄āW(Z̄) +

1

2
{Za, Z̄ ā}2

+ 2iλDτ λ̄+ 2i λσi {Xi, λ̄} + 2iψa Dτ ψ̄
ā + 2i ψaσi {Xi, ψ̄ā}

− i 2
√

2 Z̄ ā {λ, ψa} + i 2
√

2Za {λ̄, ψ̄ā}

− i√
2
ψa∂a

∫

d2σ′ ψb(σ′)
∂

∂Zb(σ′)
W(Z) +

i√
2
ψ̄ā∂̄ā

∫

d2σ′ ψb̄(σ′)
∂̄

∂̄Z̄ b̄(σ′)
W(Z̄) .

(5.21)

Here the holomorphic superpotential is given by an integral over the two-dimensional space

like components of the membrane worldsheet

W(Za) =

∫

d2σ

(

W (Za) − 1

3
ǫabc Z

a {Zb, Zc}
)

, (5.22)

and any derivative acting on it, as ∂aW, must be understood as a functional derivative

with respect to Za(σ).

Now we are ready to obtain the Matrix theory action utilizing again the familiar

discretisation procedure of replacing the Poisson brackets with matrix commutators:

L =Tr

[

1

2
DtX

iDtX
i +

1

4
[Xi,Xj ]2 +DtZ

aDtZ̄
ā + [Xi, Za][Xi, Z̄ ā]

−1

2
∂aW(Z)∂̄āW(Z̄) − 1

2
[Za, Z̄ ā]2 + 2iλDtλ̄− 2λσi[Xi, λ̄]

+ 2iψaDtψ̄
ā − 2ψaσi[Xi, ψ̄

ā] + 2
√

2Z̄ ā[λ, ψa] − 2
√

2Za[λ̄, ψ̄ā]

− i√
2
ψa∂aTr

(

ψb∂bW(Z)
)

+
i√
2
ψ̄ā∂̄āTr

(

ψb̄∂̄b̄W(Z̄)
)

]

. (5.23)
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This constitutes our main result: M-theory in a generalized pp-wave background with

gauge flux described by a holomorphic function W (Za) has its Matrix theory description

as the dimensional reduction of N = 1, D = 4, U(N) Yang-Mills theory coupled to three

chiral supermultiplets with superpotential W(Z) given by

W(Z) = W (Z) − i

3
ǫabcTr

(

Za[Zb, Zc]
)

. (5.24)

In closing we would like to remark that the membrane or matrix theory actions found

in the above are N = 1 supersymmetric irrespective of the form of W (Z). However,

different orderings of the fields appearing in W (Z) lead to distinct marix models, but

are equivalent in supergravity or supermembrane theory. In addition functions W (Z) are

possible containing Poisson-brackets or commutators of the holomorphic fields Za, which

would have to be understood as being of non-geometric origin.

6. Discussions

In this paper we have considered a class of supersymmetric pp-wave solutions in 11 di-

mensional supergravity. The holomorphic function which describes the configuration is

related to the superpotential of the Yang-Mills quantum mechanics which comes from the

discretized supermembrane action in the relevant background.

Following the spirit of [2], it is natural to conjecture that the Yang-Mills quantum

mechanics we have derived in this paper should provide a Matrix theory description of

M-theory in the inhomogeneous pp-wave backgrounds. As an alternative to the super-

membrane action, Matrix theory can be also obtained as discrete lightcone quantization

(DLCQ) of M-theory [26]. In practice, one compactifies M-theory on a small circle and

at the same time performs an infinite boost. The quantized lightlike momentum N is

translated into the number of D0-branes through T-duality, and the large N Yang-Mills

quantum mechanics of D0-branes gives the Matrix theory.

The generalization of DLCQ prescription of M-theory to nontrivial curved background

was considered for instance in [27, 28], where the authors studied low energy dynamics of

D0-branes in weakly curved backgrounds. As a simple but nontrivial example, one can

consider the maximally supersymmetric 11 dimensional plane-wave and perform DLCQ of

M-theory [8]. Although the scalar curvature of 11 dimensional background vanishes, the

IIA configuration becomes singular when H = G++ → −4. In [8] it is verified that in

the small H approximation the D0-brane dynamics in the weakly curved background limit

coincides with the regularized supermembrane action, or the BMN matrix theory [7].

One can also apply the method of [28] to those solutions we studied in this paper.

First of all, one can easily verify that H = G++ again translates into the scalar potential

of the Yang-Mills theory, with Tseytlin’s symmetrized trace prescription [29] for matrix

fields. This way we can resolve the ambiguity of matrix ordering problem utilizing the

microscopic description through open string excitations. The rest of the action should

agree with the supermembrane prescription, since the various terms are related by N = 1

supersymmetry. Summarizing, although DLCQ description for generic pp-waves has a

– 14 –
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drawback of limited validity due to the singularity of IIA background, it in principle can

fix the ordering problem of Matrix regularization we encounter in supermembrane action. It

will be certainly interesting to further explore D0-brane dynamics in the T-dual background

in IIA supergravity.

For the solutions we studied in this paper, the flux is turned on along the six dimen-

sional subspace only, and the isometry group contains SO(3). It is thus natural to view the

matrix model as originating from a four dimensional field theory. One might ask whether

it is possible to turn on a constant flux on R
3, without breaking SO(3). This is exactly the

mass deformation which transforms the ordinary Matrix theory [2] into the BMN matrix

model [7], and as a result there will be a cubic interaction term TrX1[X2,X3] in the matrix

model.

It is elucidated in [13] that, as a four dimensional super Yang-Mills theory, the mass

parameter is related to the choice of putting the field theory on R × S3 instead of R
1,3.

Since this freedom relies on classical superconformal invariance, we expect it is not possible

in general to have a constant flux in R
3, unless W is cubic in Z. Among these the most

interesting is probably the so-called β-deformation which is known to be exactly marginal

as a 4 dimensional quantum field theory [20]. By β-deformation, the matrix commutator

is replaced by

[X,Y ] = XY − Y X −→ eiβXY − e−iβY X, (6.1)

for a constant β. In the context of Matrix theory, this deformation is considered in [21] and

the stable membrane solutions of different topology are studied in the continuum limit.

It will be certainly very interesting to consider BPS objects with different dimensions

in the matrix models described in this paper. For BMN matrix model, readers are referred

to e.g. [30 – 32] for the study of BPS configurations.
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